Ecoprogetto Venezia

Bilancio di Esercizio 2015

CONSIGLIO DI AMMINISTRAZIONE

Presidente ARMANDO ZINGALES

Amministratore Delegato ADRIANO TOLOMEI

Consiglieri TERESA ORMENESE

ADRIANO TOLOMEI (detiene anche la carica di A.D.)

COLLEGIO SINDACALE

Presidente STEFANO BURIGHEL

Sindaci Effettivi AUSILIA MATTIELLO

SANDRA TOMAELLO

Sindaci Supplenti SANDRO MAZZA

ALESSANDRA NIGRI

ORGANISMO DI VIGILANZA ex D.Lgs. 231/2001

Presidente LUCA MARIA PEDROTTI DELL'ACQUA

Componenti PAOLO CASTALDINI

AUSILIA MATTIELLO

SOCIETA' di REVISIONE

RECONTA ERNST & YOUNG S.p.A.

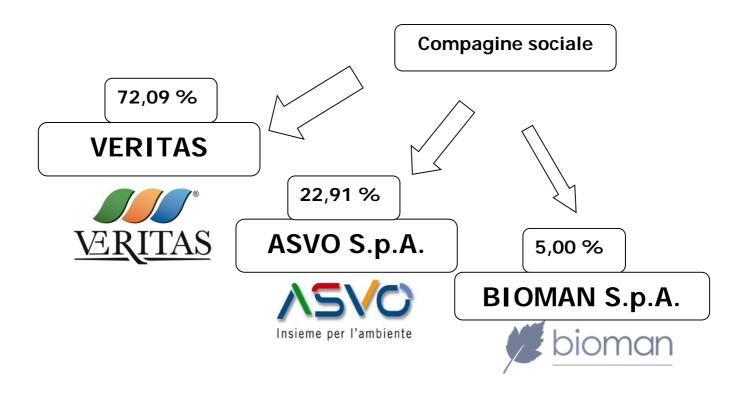
ECOPROGETTO VENEZIA S.r.I.

Sede Legale: VIA DELLA GEOLOGIA N. 31 VENEZIA (VE)

Iscritta al Registro Imprese di: VENEZIA - C.F. e numero iscrizione: 03071410272

Iscritta al R.E.A. di VENEZIA al n.280563

Capitale Sociale Sottoscritto €. 42.120.000 Interamente Versato


Partita IVA: 03071410272

Società del Gruppo Veritas, soggetta a direzione e controllo ai sensi dell'art. 2497 c.c.

ECOPROGETTO VENEZIA S.r.I. è la società mista pubblico-privata, appartenente al Gruppo VERITAS, nata nel 1998 dall'esigenza di governare, attraverso opzioni produttive integrate, il ciclo dello smaltimento dei rifiuti urbani nell'Area Veneziana, sviluppando sinergie tra le diverse componenti del ciclo e assicurando l'autosufficienza nello smaltimento ed il riciclo dei materiali derivanti dalle fasi di lavorazione.

Dal 2012 Ecoprogetto si è <u>specializzata nel trattamento e valorizzazione della frazione secca dei RU</u> che residua a valle delle raccolte differenziate, fungendo però anche da stazione logistica per il travaso, la selezione e la triturazione di molte delle frazioni raccolte in forma separata.

Ecoprogetto Venezia è controllata da **VERITAS S.p.A.** (72,09%) e partecipata da Bioman S.p.A. (5,00%) e da Ambiente Servizi Venezia Orientale – ASVO S.p.A. (22,91%), società del Gruppo Veritas.

VERITAS è società per azioni a capitale interamente pubblico di proprietà dei Comuni di:

Venezia, Chioggia, Mira, Mirano, Spinea, Martellago, Dolo, Scorzè, Noale, Santa Maria di Sala, Salzano, Cavallino-Treporti, Meolo, Camponogara, Campolongo Maggiore, Pianiga, Vigonovo, Stra, Campagna Lupia, Fiesso D'Artico, Fossò, Marcon, Quarto D'Altino, Cavarzere, San Donà di Piave, Mogliano Veneto, Morgano, Preganziol, Quinto di Treviso, Zero Branco, Annone Veneto, Caorle, Cinto Caomaggiore, Concordia Sagittaria, Fossalta di Portogruaro, Gruaro, Portogruaro, Pramaggiore, San Michele al Tagliamento, San Stino di Livenza, Teglio Veneto, Ceggia, Eraclea, Fossalta di Piave, Jesolo, Musile di Piave, Noventa di Piave, Torre di Mosto.


LA MISSIONE

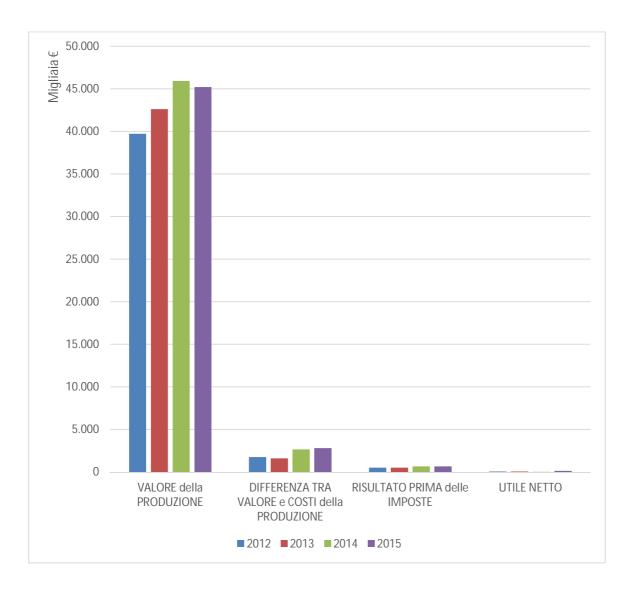
L'obiettivo di Ecoprogetto Venezia è la **valorizzazione energetica dei rifiuti urbani residui raccolti** nel territorio servito dal Gruppo Veritas (su cui, oltre ai residenti, passano circa 40 milioni di turisti all'anno) e la riduzione della quantità di rifiuti che finiscono in discarica.

Tale missione è esplicitata nei concetti di "DISCARICA ZERO" e di "VALORIZZAZIONE del RIFIUTO a KM ZERO", recuperando il massimo possibile anche dagli scarti di lavorazione dei nostri processi interni, massimizzando <u>i conferimenti del CDR / CSS alla centrale termoelettrica "A.Palladio" di Fusina</u>, per il suo utilizzo in co-combustione con il carbone, conferendo a terzi esterni solo il minimo indispensabile (con contratti flessibili e in relazione anche ai vincoli di mercato).

Attualmente, infatti, finisce in discarica circa il 5 % dei rifiuti conferiti al Polo Ecologico Integrato di Fusina, grazie anche ai processi di recupero dei sottoprodotti dei cicli principali.

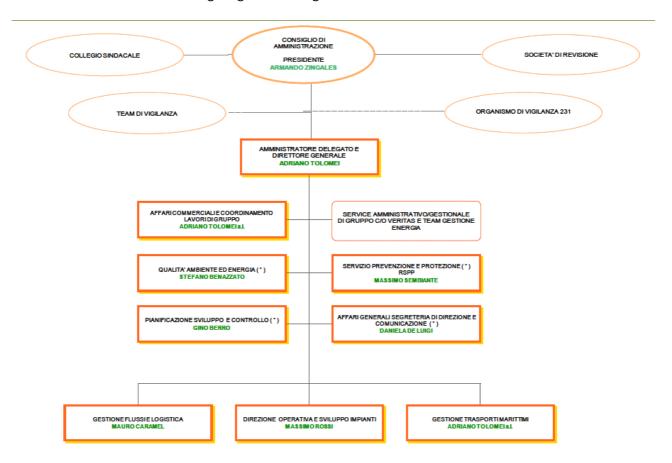
Ecoprogetto Venezia gestisce il controllo di tutti i presidi ambientali (aria, acqua, residui delle lavorazioni) garantendo le analisi previste nelle autorizzazioni d'esercizio degli impianti, oltre al presidio tecnico delle attività di miglioramento tecnologico dei cicli produttivi. Ecoprogetto Venezia ha ottenuto le certificazioni UNI EN ISO 9001:2008, UNI EN ISO 14001:2004,

ed ha un sistema di gestione energetica in via di certificazione UNI EN ISO 50001.



LA DIMENSIONE ECONOMICA

Il bilancio dell'esercizio 2015 di Ecoprogetto Venezia si è chiuso, al 31 dicembre 2015, con un Utile Netto di 156.356 €.


Il Valore della Produzione dell'esercizio 2015 ammonta a 45.222.084 €.

Il Patrimonio Netto della società al 31 dicembre 2015 è di 43.502.710 €.

Organigramma vigente da febbraio 2016

Composizione dell'organico per qualifica

Inquadramento	31-dic-14	31-dic-15
Operai	23	23
Impiegati	16	16
Quadri	5	5
Dirigenti	0	0
Totale Dipendenti	44	44
Distaccati dalla		
CapoGruppo	2	2
Distacchi alla		
CapoGruppo	3	7
Contratti interinali	0	1

(*) Si precisa che tra i dipendenti sono conteggiate anche le risorse che poi risultano indicate come distaccate presso la CapoGruppo nella parte bassa delle tabella.

Il bilancio di processo negli impianti di CDR/CSS e Compost

CDR1 e Trav.FORU/CDR2/CSS2	2009	2010	2011	2012	2013	2014	2015
RISORSE							
Metano (Nm³)*	494.000	500.703	641.651	636.296	703.100	574.874	553248
Energia elettrica (kWh)	15.012.704	16.848.550	20.510.601	22.084.070	21.973.500	20.700.528	19.049.411
Consumo di reagenti chimici							
Anticalcare (I)	250	1.650	3.900	3.900	3900	3.250	3250
Antialghe (I)	500	1.750	3.900	3.900	3900	3.250	3250
Pirofosfato di potassio (kg)	nd	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
lpoclorito di sodio (kg)	180	n.d.	n.d.	n.d.	n.d.	n.d.	n.d
Deodorizzante (kg)	60	n.d.	n.d.	n.d.	n.d.	n.d.	n.d
Sgrassante (kg)	100	n.d.	n.d.	n.d.	n.d.	n.d.	n.d

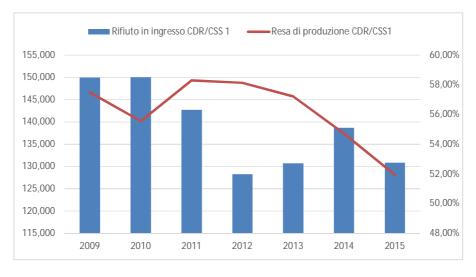
Processo travaso FORU poi CDR2 poi CSS2		2009 Solo trav. FORU	2010 Solo CDR2	2011 Solo CDR2	2012 Solo CDR2	2013 Solo CDR2	2014 Solo CDR2	2015 solo CSS2
Ore di funzionamento impianto compost poi travaso foru poi CDR2								
Rifiuto in ingresso			14.767	29.986	44.990	48.435	47.554	27618
Produzione prima compost poi CDR/biost			7.091	13.989	23.510	31.740	20.573	10.895
Emissioni LARA 1 (travaso FORU- CDR2– CSS2)	Flusso g/h Limiti	Flusso g/h Valore medio 2009	Flusso g/h Valore medio 2010	Flusso g/h Valore medio 2011	Valore medio 2012	Valore medio 2013	Valore medio 2014	Valore medio 2015
Sostanze organiche volatili	0=0	40.5	47.00	24.5	100.00	07.50	100.01	
(SOV) (espressi come C tot)	650 975							
Ione ammonio(NH ₄)				040	20.0			400
Idrogeno solforato (H ₂ S)	65	7,1	13,00	12,3	16,48	37,53	22,14	7,5
ldrogeno solforato (H₂S) Mercaptani (CH₃SH)	65 32,5	7,1 1,4	13,00 2,17	12,3 2,5	16,48 18,54	37,53 22,08	22,14 3,69	7,5 8,1
Idrogeno solforato (H ₂ S) Mercaptani (CH ₃ SH) Polveri totali	65 32,5 650	7,1 1,4 14,3	13,00 2,17 21,67	12,3 2,5 24,6	16,48 18,54 22,66	37,53 22,08 4,42	22,14 3,69 15,13	7,5 8,1 9
ldrogeno solforato (H₂S) Mercaptani (CH₃SH)	65 32,5	7,1 1,4 14,3 240	13,00 2,17 21,67 109,00	12,3 2,5 24,6 123	16,48 18,54 22,66 255,44	37,53 22,08 4,42	22,14 3,69 15,13 130,99	7,5 8,1 9 26

IL CAPANNONE PER LO STOCCAGGIO DELLA FORU E' RIMASTO IN PRODUZIONE fino al 15 maggio 2010.

I PARAMETRI AMBIENTALI

Processo CDR1 poi CSS1		2009	2010	2011	2012	2013	2014	2015
Ore di funzionamento								
impianto CDR/CSS		8.760				8.760		
Rifiuto in ingresso CDR/CSS		149.992		142.726				130.837
Produzione CDR/CSS			83.391	83.206				
Resa di produzione	% su input			58,30%	58,14%	57,22%	54,71%	51,93%
Emississi LADA 2 (CDD4	Flusso g/h	Valore	Flusso g/h Valore	Flusso g/h Valore	Flusso g/h Valore	Flusso g/h Valore	Flusso g/h Valore	Flusso g/h Valore
Emissioni LARA 2 (CDR1 poi CSS1)	Limiti	medio 2009	medio 2010	medio 2011	medio 2012	medio 2013	medio 2014	medio 2015
Sostanze organiche volatili								
(SOV) (espressi come C tot)	650			52,2	169,17	577,09	120,41	660
Ione ammonio(NH₄)	975	213,2	46,9	37,3	187,96	279,80	342,9	
Idrogeno solforato (H₂S)	65	23,7	23,4	18,7	15,38	15,74	25,13	13,5
Mercaptani (CH₃SH)	32,5	6,9	4,6	3,7	18,79	31,48	5,24	<4,1
Polveri totali	650	157,9	46,9	37,3	73,47	3,50	36,65	13,5
Ossidi di azoto (come NO ₂)	6.500	1784,3	375,3	839,5	117,9	236,08	319,34	310,5
Ossidi di zolfo (come SO ₂)	3.250	237	234,6	186,6	246,06	19,24	41,62	126,8
Policlorodibenzodiossine (PCDD) + Policlorodibenzofurani (PCDF) (I-TEQ)	0.0065	19,7 x10 ⁻⁸	1,45E ⁻⁰⁷	1,1x10 ⁻⁴	7x10 ⁻⁰⁹	3.8x10 ⁻⁰⁶	2,8 x10 ⁻⁸	5,91 x10 ⁻⁹
Polveri totali camino				,				·
abbattimento polveri	1.700	145,2	87,80	87,5	75,23	3,49	84,31 ⁽¹⁾	26,85
RIFIUTI PRODOTTI								
Inerti da CDR/CSS (t) – CER 191212		7.153	5.981	8.758,4	9.322,04	20.711,62	13.221	32036 ⁽²⁾
Minerali e rocce (t) – CER 191209 e Vetro da trattamento								
meccanico – CER 191205		8.939			6.184,20			
Ferrosi da CDR/CSS		3.020			2.397,82	3.235,72		3069 ⁽³⁾
Non Ferrosi da CDR/CSS Fonte: Ecoprogetto Venezia S.r.l.		296	203	201,86	253,84	467,22	101	

Fonte: Ecoprogetto Venezia S.r.l.


(* fino al 19/3/03 si è consumato GPL, dal 20/3/03 si è consumato metano)

n.d.=non disponibile

La variabilità dei dati in emissione può essere ricondotta a più fattori tra i quali i limiti di confidenza degli strumenti utilizzati nei diversi laboratori di analisi e le variazioni di portata.

- +Il compostaggio ha funzionato a pieno regime fino a fine luglio, poi l'attività è cessata per la riconversione dell'impianto.

 ** Il sistema LARA funziona 24 ore al giorno (per prescrizione provinciale).
- (1) esprime la somma dei flussi, espressi in g/h, del parametro polveri rilevati ai camini CM3-CM4-CM5
- (2) totale linee 1 e 2 CER 191212 (compreso biostabilizzato) e CER 191209
- (3) totale ferrosi (CER 19 12 02) e non ferrosi (CER 19 12 03) linee 2 e 3

